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An adaptive mesh procedure for improving the quality of steady state solutions of the Euler 
equations in two dimensions is described. The procedure 1s implemented in conjunction with a 
finite element solution algorrthm, using hnear triangular elements, and an explicit time- 
stepping scheme. The mesh adaptation IS accomplished by regeneration using information 
provided by the computed solutton on the current mesh. The meshes produced are charac- 
terised by the appearance of stretched elements in the vicinity of one-dimensional Row features 
and can exhibit a large variation m element size. This allows solutrons of enhanced qua&y to 
be produced in a computationally efficient manner. f 1987 Academbc Press. Ix 

1. INTRODUCTION 

Numerical methods used for the analysis of problems involving compressible 
must be capable of providing adequate definition of the narrow regions of 
gradients (e.g., shocks) which frequently occur and which are normally found to be 
embedded in large areas in which the flow variables vary slowly. As the location of 
these high gradient regions is not known to the analyst a priori, it is apparent tbat 
adaptive mesh methods, with a posteriori error estimators, will have an ~rnpo~ta~t 
role to play in the development of efficient solution techniques for such ~rob~~rns. 
To date, successful grid adaptation techniques have been based on either mesh 
enrichment or mesh movement. These techniques have generally been implemented 
in conjunction with explicit time integration procedures and have been designed for 
the analysis of steady state problems. 

Mesh movement can be accomplished by advancing the solution towards steady 
state and, at certain times, replacing the mesh sides by springs of a certain stiffness. 
The nodes are then moved until the spring system is in equilibrium. The spring 
strengths are normally based on the local solution gradient In two dime~sions~ 
such techniques have been used with finite volume methods on quadrilaterals [I ] 
and finite element methods on triangles [2]. Since new nodes are not added, and 
nodal connectivities are not changed, a drawback of this method is that the 
accuracy of the final computation is limited by the structure and resolution of the 
initial grid. 

Mesh enrichment algorithms have been used in finite element methods with 
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triangles and tetrahedra [3,4] and finite volume methods with quadrilaterals [S]. 
The basic approach is to advance the solution toward steady state on an initial 
(coarse) grid and then to use an error or refinement indicator to mark the com- 
putational cells which should be refined. The marked cells are automatically sub- 
divided, the computation proceeds and the process is repeated until the analyst is 
satisfied with the solution quality. Although this method has proved to be effective 
in practice, it also suffers from certain drawbacks, e.g., in the solution of two-dimen- 
sional problems the areas in the vicinity of one-dimensional flow features, such as 
shocks and boundary layers, are not refined in an efficient manner and the number 
of elements employed increases rapidly with each refinement. 

Recently, Liihner and Morgan [6], in the context of the finite element method, 
have attempted to reduce some of these problems by implementing a process which 
achieves directional refinement and which also removes elements from those regions 
of the flow where the error indicator is small. Although the programming of this 
refinement algorithm was complex, the quality of the results produced encouraged 
further research. 

In this paper we describe an approach in which the adaptive refinement of the 
grid is accomplished by means of a remeshing procedure which is based upon infor- 
mation provided by the computed solution. The two-dimensional compressible flow 
equations are solved by using an explicit finite element method [7] with a 
triangular mesh and the remeshing is performed by a mesh generator which allows 
a significant variation in the mesh spacing through the region of interest. The mesh 
generator also allows efficient definition of one-dimensional flow features by 
generating elements which may be stretched in the direction of the feature. The 
performance of the proposed approach is illustrated by using it to solve problems of 
regular shock reflection at a wall, supersonic expansion flow around a corner, and 
hypersonic flow past a blunt body at high angle of attack. 

2. GENERATION OF THE INITIAL MESH 

2.1. The Background Grid 

The problem of generating a mesh over a two-dimensional region of arbitrary 
shape is considerably simplified if unstructured triangular meshes are employed 
[S, 91. For the method to be described here, this process is started by constructing 
by hand a coarse background grid of 3-noded triangular elements which completely 
covers the solution domain of interest. This is illustrated in Fig. 2.1 which shows a 
possible background grid consisting of only four elements, for a problem of expan- 
sion flow around a corner. For the elements to be generated, it is convenient to 
define a node spacing 6, the value of a stretching parameter s and a direction of 
stretching a. The generated elements will then have typical length SS in the direction 
parallel to a and a typical length 6 in the direction normal to a (see Fig. 2.2). The 
background grid is used to provide a piecewise linear spatial distribution for these 
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FLOW 

DIRECTION 

FIG. 2.1. Coarse background grid used to cover the computational domain (shaded) for a problem 
of supersonic expansion around a corner. 

parameters over the grid to be generated. Thus, at each node on the backgr~u~ 
grid, the nodal values of 6, s, and a must be specified. During the generation 
process the local values of these quantities will be obtained by linear interpolation, 
over the triangles of the background grid, between the specified nodal values. For 
the initial mesh, the location of one-dimensional features is not known in general 
and so the value s = 1 (i.e., no stretching) is normally specified. The node spacing 6 
can also be defined to be uniform but a variation of 6 can be achieved (by suitable 
construction of the background grid) if it is apparent that increased mesh resolution 

FIG. 2.2. The definition of the mesh parameters b, S, and a. 
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is required in certain regions of the flow domain, e.g., in the vicinity of the corner in 
the problem of Fig. 2.1. Note that if 6 is required to be uniform initially and no 
stretching is to be specified, then the background grid need only consist of a single 
element which completely covers the solution domain. 

2.2. Generation of Boundary Nodes 

The boundary of the solution domain is represented by the union of closed loops 
of curved segments and boundary nodes are placed at the points of intersection of 
these segments. For simply connected regions there is only one closed loop, whereas 
for multi-connected regions there will be as many internal loops as the number of 
openings inside the domain. The segments of the exterior boundary are defined in 
an anti-clockwise manner while the segments of interior boundaries are specified in 
a clockwise fashion. This means that, as the boundary curve is traversed, the region 
to be triangulated always lies to the left. Before beginning the process of generating 
triangles within the region of interest, the positioning of additional nodes on the 
boundaries of the region has to be performed. Each boundary segment is considered 
in turn and nodal points are generated on the boundary segments, with the spacing 
of the points being determined by interpolated values of 6, s, and a. 
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FIG. 2.3. Updating the front during the triangle generation process: (a) The form of the front at a 
certain stage. (b) The updated front following the generation of a new element. 
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2.3. Triangle Generation 

The mesh generation algorithm utilises the concept of a generation front in a 
form which is very similar to that proposed by Lo [9}. At the start of the process 
the front consists of the sequence of straight line segments which connect con- 
secutive boundary nodes. During the generation process, any straight line segment 
which is available to form an element side is termed active, whereas any segment 
which is no longer active is removed from the front. Thus, while the domain boun- 
dary will always remain the same, the generation front will change continuously 
and has to be updated whenever a new element is formed. This updating process is 
illustrated in Fig. 2.3. 

The following steps are involved in the process of generating a new triangle in the 
mesh: 

(a) An active side in the front is chosen as a base. If large variations in 6 are 
present in the background grid then it is advantageous to look for the smallest 
active side, but if 6 is constant or varying slowly the last active side in the front is 
used. 

(b) Suppose the chosen side joins nodes A and B. Determine the local me 
parameters 6,, So, and aM at the mid-point A4 of AB by interpolating over t 
background grid. Make a local rotation of coordinates so that a,,, lies along the .x1 
axis and scale the x1 coordinate by a factor So. In the new coordinate system, a 
triangle which is as regular as possible will be generated. 

(c) Determine 6, according to 

/ 

0.55 AB 6, < 0.55AB 

6,= 6, 0.55AB < 6, < 2AB (2.1) 

2AB 2AB<6,. 

The inequalities used here are necessary to ensure geometrical compatibility and to 
ensure that elements with excessive distortion are not generated. Different 
inequalities can be devised but the values shown have worked well in practice. Now 
construct the point C which is distance 6, from A and from B. 

(d) Determine all the active nodes which lie within the circle with centre at C 
and radius nAB. (There is no unique choice for the value of n which should 
adopted, but the value y1= 5 has been used for the computations reported in this 
paper.) These nodes are ordered according to their distance from C, with the Hurst 
nodes in the list being the closest to C, and are denoted by IV,, N2,..., N,. 

(e) Place C at the head of this list unless 

AN, < 1.56, and BNI < 1.56,. (2.2) 

(f) The required connecting point Nj is then taken to be the first node in the 
list which is such that the interior of the triangle ABN, does not contain any other 
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FIG 2.4. The searching algorithm to locate point M on the background grid. The area coordinates 
L,, L,, and Lk of element e are evaluated at M. Here L,(M) -L L,(M) <L,(M) and the next element to be 
checked is element e,. 

node N, in the list (excluding C) and such that the line MN, does not intersect any 
existing sides in the front. The new element is formed, the coordinates are transfor- 
med back to the original space, and the front is updated as indicated previously. 

The triangle generation process ceases when the number of active sides in the front 
is reduced to zero. 

2.4. Searching Algorithm 

Each time the values of J,,,,, sM, and aM are required during stage (b) above, they 
have to be obtained by locating point M within an element of the background grid. 
An efficient search algorithm has been implemented which requires, for each 
element e of the background grid, the knowledge of the three surrounding elements 
which have sides in common with element e. Given the coordinates of M and a 
starting element of the background grid, the three area coordinates [lo] of M are 
determined. If each area coordinate lies between zero and one then the element con- 
tains the point M. If not, the node for which the area coordinate is a minimum (see 
Fig. 2.4) is found and this indicates the next element to be checked. In this manner, 
the necessity of searching over all the elements in the background grid is avoided. 

3. SOLUTION OF THE EULER EQUATIONS 

The equations governing two-dimensional compressible flow are considered in 

where 

the form 

g+gJ=o, 
I 

(3.1) 

(3.2) 
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Here p, p, and E denote the density, pressure, and specific total energy of the 
respectively, and u, is the component of the fluid velocity in the direction xi 
equation set is completed by the addition of the state equation 

P= (Y - lME--.5y]h (3.3) 

where y is the ratio of the specific heats. 
An explicit finite element procedure for the solution of Eq. (3.1) has been widely 

reported [3, 111 and has recently been improved by the incorporation of a 
flux-corrected transport [FCT] algorithm [7, 121. For the steady state problems to 
be considered in this paper, the FCT algorithm bas been employed and the 
convergence is accelerated by using local timesteps [ 13 ]. 

4. ADAPTIVE REMESHINC 

The procedures outlined above enable an initial approximation to the stea 
state solution to be obtained for a given problem. The solution quality can be 
improved by adaptively refining the mesh [3-61. Here this mesh adaptation is 
achieved by using the computed solution to determine “optimum” nodal values for 
6, s, and a. The mesh is then regenerated with the initial computational mesh now 
acting as a background grid. To determine the values for the mesh parameters, it is 
necessary to use the initial solution to give some indication of the error magn 
and direction. The Euler equations are expressed in terms of a vector unknow 
whereas the development of a practical error indicator is most easily assompli 
in terms of a single scalar function. Thus, for the Euler system, a certain “key” 
scalar variable should be identified and then the error indication process can be 
performed solely in terms of this variable. In this paper we follow previous work 
[3, 5, 6, 111 and base the error indication on the density variable p. 

The construction of the error estimator can take various forms depending upon 
the error norm that we wish to consider. To simplify matters, we shall discuss the 
problem assuming initially one-dimensional behaviour in which the variable p(x,) 
is approximated by p(x,), using linear interpolation. The first derivative of the 
approximation will be discontinuous in each element but, by projection or 
variational recovery [14], its nodal values can be approximated. The second 
derivative can be evaluated in a similar fashion. 

The knowledge of the second derivative within an element e allows a 
mination of the local error E,, defined by 

provided we assume that the nodal error is zero. For then, to the next order of 

581/12/2-12 
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approximation, this error is simply the departure of the quadratic from the linear 
approximation and can be expressed as 

Ee=;x,(h,-Xl)~ 

1 e 
(4.2) 

where here the origin of x1 has been placed at one end of the element and h, 
denotes the element length. The root mean square value, EfMS, of the error over the 
element can then be computed as 

(4.3) 

In many other situations [15], it has been demonstrated that equal distribution of 
the element error leads to an optimal mesh and, in what follows, we employ the 
same criterion. The simple measure of Eq. (4.3) gives an estimate of the error in 
each element and this is used to guide the refinement process by the requirement 
that the error should be equal in all elements, i.e., 

(4.4) 

With the second derivative evaluated at each node P on the current mesh, Eq. (4.4) 
suggests that the new mesh be generated with the local spacing 6, determined 
according to the condition 

d2 3 
I I ’ dx: p 

=constant. 

For two-dimensional problems involving a density function p(x,, x2), a matrix mp 
of second derivatives can be constructed at each node P on the current mesh such 
that 

a2p 
mtilp=- ax, ax, p' (4.6) 

The local principal directions X, and X2 are determined and the corresponding 
quantities 

A -a26 
1P ax: p' 

A -a*fi 
*P a$ g l&PI ’ 112Pl (4.7) 

are obtained. Once this is done, the one-dimensional process outlined above is 
applied in each direction separately, leading to the requirement that 

a$jp 121~1 = Sf2jp lJ.2~1 = constant = ‘Lin 1~11~~~~ (4.8) 
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where 6C1,p and JC2Jp denote node spacings in the X, and X, directions, respectively, 
l&lmax is the maximum value of IArpj over each node in the current mesh, and a,,, 
is a user-specified minimum value for 6 in the new mesh. The magnitude of the local 
stretching parameter sp is simply defined to be the ratio of the two spacings, i.e., 

IU II2 sp= I/z,,I . t-1 (4.9) 

It is apparent that, in regions of uniform flow, the computed values of 6, will be 
very large. Practical mesh generation constraints therefore require the user to 
specify a maximum allowable value 6,,, for the local spacing on the new mesh. 
Then, if 6, computed according to Eq. (4.8) is such that 6, > 6,,,, the value of A, 
is set equal to 6,,,. Similarly, a maximum allowable value s,,, for the stretching on 
the new mesh is prescribed by the user, i.e., if the computed local strekhing sp 
exceeds smax, then sp is replaced by s,,,. It should be noted that Eq. (4.9) is such 
that high stretching can be expected only in the vicinity of one-dimensional flow 
features with low curvature. 

The mesh is regenerated according to the computed distribution of the me 
parameters and the solution of the problem recomputed on the new mesh. T 
process can be repeated on a sequence of meshes until the analyst is satisfied with 
the quality of the solution produced. The increase in definition of the flow features 
is achieved by decreasing the value of 6,,,. The value of 6,,, is the major parameter 
governing the number of elements in the new mesh. For the problems considere 
here, h,,,, is reduced by a factor of 2 - 3 in each remeshing and it is found that the 
number of degrees of freedom on the new mesh is not much larger (sometimes even 
smaller) than the number employed in the original mesh. More sophisticated 
methods for choosing 6,,, can obviously be devised to automatically control the 
number of elements in the new mesh. 

5. EXAMPLES 

In this paper we will demonstrate the numerical performance of the proposed 
approach by considering the solution of three different problems. 

FIG. 5.1. Regular shock reflection at a wall: the problem definition and the computational domain 
(shaded). 
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b 

d 

FIG. 5.2. Regular shock reflection at a wall: the sequence of meshes employed and the corresponding 
pressure contours. 
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d 

f 

FIG. 5.4. Supersonic expansion around a corner: the sequence of meshes employed and the 
corresponding density contours. 
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TABLE I 

Details of the Sequence of Meshes Employed 
for the Problem of Regular Shock Reflection at a Wall 

Mesh Elements Nodes 

1 478 279 
2 419 265 
3 528 285 

s mm 6 max SInax 

0.13 0.13 1.0 
0.05 0.60 30 
0.02 0.75 6.0 

(a) Regular shock reflection at a wall. This is a standard test problem and 
has been widely discussed in the literature. The problem definition is given in 
Fig. 5.1 and the sequence of meshes employed with the corresponding computed 
pressure contour distributions are shown in Fig. 5.2. Details of the meshes used are 
shown in Table I. 

(b) Supersonic expansion around a corner. The case considered is that of a 
flow at Mach 6 with y = 1.38. The problem definition is shown in Fig. 5.3 an 
sequence of meshes used together with the corresponding computed density contour 
distribution is given in Fig. 5.4. The variation of the density along the wall in each 
case is shown in Fig. 5.5. Details of the meshes used are shown in Table II an 
can be observed that the initially generated mesh contains 977 elements whereas the 
final mesh has only 758 elements. 

(c) Hypersonic flow past a blunt body at high angle of attack. The problem 
delinition is given in Fig. 5.6 and represents a Mach 25 flow at 20” angle of attack. 
The sequence of meshes employed and the corresponding density and pressure con- 
tours are shown in Fig. 5.7. The distribution of velocity vectors at steady state on 
the final mesh is shown in Fig. 5.8. Details of the meshes used are given in Table III. 
For this problem, the generation of the final mesh required 4.15 min of CPU time 
on a VAX-750 while the flow analysis reduced the residual by three orders of 
magnitude in 72 min on the same mesh. This indicates the small relative com- 
putational effort spent in the regeneration process. 

TABLE II 

Details of the Sequence of Meshes Employed 
for the Problem of Supersonic Expansion around a Corner 

Mesh Elements Nodes 

1 977 538 
2 599 329 
3 758 408 

6 nun 6 max smax 

0.20 1.00 1.0 
0.10 1.50 3.0 
0.05 2.00 4.5 
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FIG. 5.5. Supersonic expansion around a corner: the variation of the density along the wall for each 
mesh employed. 
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FIG. 5.6. Hypersonic flow past a blunt body at high angle of attack: the problem definition and the 
computational domain (shaded). 

TABLE III 

Details of the Sequence of Meshes Employed for the Problem of 
Hypersonic Flow Past a Blunt Body at High Angle of Attack 

Mesh Elements Nodes 

1 978 541 
2 696 383 
3 1574 821 

&nin 6 ma% %nax 

0.25 0.25 1.5 
0.10 1.20 3.0 
0.04 2.50 4.5 



FIG. 5.7. Hypersonic flow past a blunt body at high angle of attack: (a) the sequence of meshes 
employed and the corresponding (b) density and (c) pressure contours. 
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FIG. 5.8. Hypersonic flow past a blunt body at high angle of attack: the velocity vector distribution 
on the final mesh. 

6. CONCLUSIONS 

We have successfully demonstrated the use of an adaptive mesh regeneration 
procedure for the solution of two-dimensional problems involving compressible 
high speed flow. A full analysis of the influence of the highly irregular grids, 
produced by adaptation, on the accuracy of the solution has not been performed. 
However, the numerical computations here presented indicate that in such cases 
good accuracy can still be maintained. An essential feature of the procedure is its 
ability to gradually improve the quality of the solution without necessarily 
significantly increasing the total number of unknowns at each stage. We are 
now beginning to apply these ideas to the solution of three-dimensional problems 
and it is expected that for such problems this feature will prove to be even more 
important. 
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